
MF
1.03

Severe-performance database for professional applications
copyright Carl Brown, December 1993

Screwy looking fonts:

If your fonts seem all out of wack, try changing the selected printer. When preparing this manual, it
was created for an HP DeskJet 500 or a Laserjet. If you are using something other than one of
these, your fonts may look strange. Sorry about this, but it wasn't noticed until we tried to FAX it
and the fonts got all out of wack...

Overview
WHAT IT IS

MF is similar to many DBMS's available today, however, it is generally faster and smaller than the
others. Using standard functions you will get a speed increase of about 100% over a lot of other
DBMSs. However, using the severe-performance functions, speed can be UP TO 20,000% faster.
(Note: we have not benchmarked ourselves against all other databases, so it is impossible to say
there isn't something FASTER. But, we are confident that we are pretty quick...)

MF also allows professional developers to create 'CLIENT-SERVER' based programs without requiring
the developer to pay heavy run-time license fees for every customer. (NOTE: BIOS drivers are not
currently available...) The 'severe-performance' functions will permit C/S type of access across a
network. (Since record based implementations don't go well with the C/S architecture...)

MF is created for software-developers with a need for speed and total flexibility. You can treat MF as
the worlds largest linked-list or as a completely relational data-storage system. MF is for
programmers that want to get very low level. Please, don't try to use MF if you're comparing it to
Microsoft Access or some other high-level database. MF is designed to be embedded in
professional applications -- not used for a quick inhouse report generator.

You will probably discover a bunch of neat things about MF that you couldn't do in your old DB.
What you won't discover about MF is a limitation! If you find a limitation that is correctable in the
DOS world, we will correct it. (e.g. We can't create a 10 Terabyte data file without circumventing
DOS. So, we can not correct this terrible <grin> limitation.) However, future releases will support
multiple database splitting to allow 2 BILLION records (unlimited total disk space). And, if a few
compilers get their act together and support a 64-bit long, then we'll support gillions of records...

WHAT IT IS NOT

Where MF is not as complete (in screen I/O, miscellaneous overhead), is where other DBMS'
outshine MF. But, if you are using a high-level interface tool, MF will fit right in. MF is not tied to a
particular language. MF will work with VB and C and should work with any language capable of
calling a DLL.

MF does not support ODBC, SQL, etc... MF is the low-level version of a high-level database. You
may create an SQL wrapper for MF and sell that with MF (we don't charge a redistribution fee -- so,
you can feel free to add to it whatever you want...). If you create an ODBC driver or whatever, it's
all yours.

Also, if you create an 'extension' to MF, you may distribute MF at no-charge (provided, the end-user
of your extension pays something to you and us...) Of course, you could pay for the distribution
rights and the end-user wouldn't have to pay us one cent. (But, you'd be left to support the actual
database itself...)

Why choose MF?
MF was created to satisfy a need for a windows database that actually worked without GPF'ing or
behaving inconsistently every couple of hours. MF is actually owned by a parent company, but I
(Carl Brown) wrote it and convinced them to let me put it out for public use.

MF is tested extensively on in-house (actually, semi-retail...) products where I work. Before MF is

released, it is placed in to the production release of 3 different retail applications and most bugs are
discovered before the ZIP file (you receive) goes out the door. Chances are, there aren't any bugs
in the version you receive. However, annomalies do pop up from time to time and I appoligize for
any inconveniences that occur.

So, why choose MF?
It's cheap, it's fast, it's embedable, it's small, it's expandable, and it is actually tested in a real world
application before it goes out the door.

Concepts

The section assumes you are familiar with at least one other database manager and are an
experienced programmer. With a few exceptions, most examples will be in VB. Reason: it is easier
for a C programmer to understand VB than a VB programmer to understand C.

DATA FILES
MF does not hold you to a set of fields. MF merely allocates storage to the size you specify. A data
file consists of:
INDEX_KEYS and DATA_SPACE.

DATA_SPACE can be up to (32k minus the size of the INDEX_KEYS). Unless you plan to store BLOBS,
that should be more than enough space...(BLOB support will be added in future releases. How far in
the future depends on how many people request it...)

A record in MF is 'virtual', meaning in can be a record of any type for you.
e.g.
in C, you will often find structures of 'unions'. These unions can mean different things at different
times.

Therefore, in MF, you just tell it the size required for the largest 'structure' you will use. More often
than not, you will only be dealing with one structure per file, but in some cases, you may not. MF
leaves the decision up to you...

e.g.
C
typedef struct {

char lName[20];
char fName[20];

} tPersonKey;

typedef struct {
char SAddr[100];
char Zip[9];
char City[20];
char SSN[9];

} tPersonData;

typedef struct {
tPersonKey Key;
tPersonData Data;

} tPerson;

To create a database like this you would give the database record size:
sizeof(tPersonData);

and the first index key a size of:
sizeof(tPersonKey);

How you go about setting it all up is entirely up to you... But, once you have your structures
defined, you can manipulate and massage them and 'FILL' them however you want to...

NOTE: MF is not sensitive to the NULL terminator. It is recommended that you NULL out (or come
up with some consistent way) of identifying your data. (Especially concatenated index fields...)

VB Example
Type tPersonKey

lName as string * 20
fName as string * 20

End Type
Type tPersonData

SAddr as string * 20
Zip as string * 9
City as string * 20
SSN as string * 9

End Type

Type tPerson
Key as tPersonKey
Data as tPersonData

End Type

Size of data would be:
len(tPersonData)

Size of key would be:
len(tPersonKey)

(NOTE: To get the LEN in VB, you must first declare those structures (Types) as a variable and get
the len of the variable.)

INDEXES
Indexes can be keyed on:
character

(Char fixed length up to 128 bytes)
characters are based on ASCII ordering. e.g. A > a
(NOT sensitive to NULL)

character - NOCASE
(Char fixed length up to 128 bytes)
strings will not be case sensitive. e.g. A == a
(NOT sensitive to NULL)

integer - signed
(2 Bytes)
(Arrays of integers are allowed up to 128 bytes)

long - signed
(4 Bytes)
(Arrays of longs are allowed up to 128 bytes)

User-Defined
(Up to 128 byte keys)
(Anything you want...)

Combination keys are not supported (with correct results) internally (i.e. String and Integer
combination). That's what user-defined is for... See Creating User-Defined keys for more
information.

For the sake of argument, a 'key' that has an 'integer' tacked onto the end will sort, but it won't sort
correctly. 'Integer's are stored with the LSB (least significant byte) first. Which means 255 > 256.
While you could 'SWAB' the values and get correct results with concatenated string and integer
combos, it's probably more trouble than it's worth.

Internally, you may concatenate similar data types (i.e. longs, strings and ints). e.g.
VB
TYPE Key1

Group as Integer
SubGroup as Integer

END TYPE

C
typedef struct {

int Group;
int SubGroup;

} Key1;

With this example, when you create the index, you would specify a type of INTEGER and a byte
count of 4. To MF this will imply: Order by the First and sub-order by the second integer. This is
probably one of the most powerful capabilities of MF. Many databases require you to turn these into
STRINGS and concatenate the strings for your search/storage. You will be surprised at how fast this
is and how useful it is. (especially when dealing with longs...)

As an example, 3 LONGS would require only 12 bytes in the index (in MF). However, in many other
databases, to store the string equivalent would be over 30 bytes. Additionally, if you stored the

'longs' as a string, you would have to PAD the string with 0's in order to get the database to store
them in 'ascending' order.

NOTE:
EACH index must be the first part of the 'structure'. e.g.
TYPE tRecord

' Index 0
SSN as string * 11

' Index 1
LastName as string * 20
FirstName as string * 15

' DATA (unindexed portion of the record...)
Street as string * 50
City as string * 20
.
.
.

End Type

Why did we do it this way? Because, if you're NOT updating an index field, we can stream a
contiguous data segment to disk and that's MUCH, MUCH faster than scattered writes.

There is one problem with this approach: What if you want to use a key in two different indexes?
Unfortunately, the only solution is to store it in the database twice (or more, depending on how
many indexes need the key...). Certainly this is a nuisance, however, the extra use of space
shouldn't be too burdensome.

Another note about this: This 'structure' has the keys and data defined in the same structure. That
is perfectly acceptable. The only problem with defining the indexes and data in the same structure
is if you want to write the 'data-only' portion of a record. In C, you could pass the first 'data'
member of the structure and pretend it is the data structure. In VB, it isn't quite so easy to
segregate the two. Your better off if you have separate index and data structures because if you
add more data fields and you want a newly added data field to be the FIRST data field, all of your
'member' passing would need to be fixed to refer to the first member.

Putting it together
(Quick start)

If you have VB, please read the sample VB application. It demonstrates how you would go about
developing an application using MF. This is a quick review of how to use MF.

From begining to end:

mfInit
mfOpen and mfCreate

mfRead/Write/Seek/etc

mfDeInit

Browse through Appendix D (Quick Reference)

An explanation of begining to end:

mfInit
In your WinMain or startup form, you would generally call mfInit. The value returned from mfInit is
used in nearly every call to MF. You should only call this one time (at the beginning of your
program). In general, the value returned from this call should be placed in a GLOBAL variable so
you don't have to reinit every time you need your handle. If you are opposed to GLOBALs, you
might think about a static wrapper that will return your MF TASK handle (or, will INIT if it doesn't
have one yet...).

Recommended use (in C):
hMF_TASK hMFTASK;
WinMain(...)
{
.
.
.
hMFTASK = mfInit(...);
.
.
.
}

mfOpen and maybe mfCreate
Most the time, you will need access to your databases immediately. Generally, just open them and
keep them open (Or, create and open if they don't exist...). (Note: You may wish to make your
database handles 'GLOBALs' also. You should only open a particular database ONE time per
application instance or mfClose call...).

mfRead/Write/Seek/Skip

You will probably repeatedly call the Read/Write/Seek and Skip functions (as well as a few others...).
These 'other' functions are generally used in response to user actions (Dialog box response, listbox
clicks, etc...).

Nearly every MF function relies on the handles supplied by mfInit and mfOpen.

mfDeInit and maybe mfClose
When your application is about to exit, make sure you call the mfDeInit function. You MAY close
your databases yourself (mfClose) or you may allow mfDeInit to do it for you. Generally, you place
the mfDeInit in your WM_CLOSE message or in the Form_Unload of your main form (in VB).

Document Conventions
Most C programmers will recognize everything in here, however, to be fare to VB programmers, the
following will apply:

& in front of a 'variable' means: Pass by reference

i in front of a variable means signed integer
l in front of a variable means signed long
s in front of a variable means array of characters (a string...)
sz in front of a variable means array of characters (a string...) with NULL termination
a in front of a variable means 'any' type of data

Standard API Calls

NOTE: All API calls return a NEGATIVE if there is an error in the process. No API call will return a
negative unless it is an error. (EOF and BOF are the only exceptions...). Therefore, if the return
value is NOT negative, you can assume the function was successful.

mfAppendData
Appends a record to a database -- returns new record #.

lNewRecordNumber = mfAppendData(&sDataOnly, iTask, iDBHndl)

parameters:
- Data DATA ONLY portion of a record structure
- Task (hMF_TASK) Task from mfInit
- Database (hMF_DB) Database handle from mfOpen

returns: (RPTR) New Record Number or error (-x)

Append will place only the 'DATA' portion of a record on disk. The 'indexes' are not updated until
you do a mfWrite. Generally, you will call:

mfWrite(mfAppendData(...), ...)

mfAppendData should probably be called mfNewRecord or something else. An append implies the
record is placed at the end of the database. In most cases, it is. However, if there are any deleted
records, mfAppendData will reuse a deleted record.

NOTES:
There is a reason for passing the DATA and only writing it (and not automatically updating the index
keys while we are at it...). As mentioned in mfWrite, the slowest part of accessing the database is
the index. So, in theory, you COULD append 200 records and pass the 'indexing' part off to a server
program that you create. This is just an idea that we will fully integrate into the system in future
releases... However, you can take advantage of the enhanced speed (if you wish) right now. Don't
fret if you don't. We usually just append and write at the same time. It's only there so you have
the option.

mfBottom
Returns bottom (last) record in index order.

lBottomRecord = mfBottom(iTASK, iDBHndl, iXHndl)

parameters:
- Task (hMF_TASK) Task from mfInit
- Database (hMF_DB) Database handle from mfOpen
- Index Number (int) Index that you want the 'last' record from

returns: (RPTR) last record in index order or error (-x)

If you want to start at the bottom of an index and read through all the records in the database in
'index' order, you can call this to get the last record in the index, then call mfSkip to move
sequentially through the database.

Note that BOTTOM is not the bottom of the database, but the bottom of the index you specify. (i.e.
the LAST record in sorted order). To obtain the last record in the database, see mfInfoDB.

mfBottom is generally used to return to the last record if the user hits EOF or if you need to find the
last 'transaction' or what-not that was added to the database.

Code Fragment (VB):

' Demonstrates a 'skip' routine (a more interesting skip routine is in
' the BCARD.frm file)
' If the SKIP fails to produce a valid record, back-up to the 'LAST'
' record in the database

lCurRec = mfSkip(lCurRec, 1, iTASK, iDBHndl, iXHndl)
' If the user is past the EOF, beep at them and
' place them on the last record.

if lCurRec = MFSEEK_EOF then
BEEP
lCurRec = mfBottom(iTASK, iDBHndl, iXHndl)

endif

mfRead(lCurRec,...)
.
.
. ' Update the display...

mfClose
Closes a database and all associated indexes

iStatus = mfClose(iTask, iDBHndl)

parameters:
- Task (hMF_TASK) Task from mfInit
- DB Handle (hMF_DB) Handle returned from mfOpen

returns: 0 or error (-x)

When you are done with a database, you can close it with this command.

MF can open and close databases VERY quickly (as fast as DOS will allow...). Since there are a
limited number of file-handles available, we recommend closing any database you will not be using
often.

Note: mfDeInit will automatically close all open databases and indexes for you.

mfCreateDB
Create a new database and indexes

This is the most convoluted of all the commands in the MF. But, lets give it a shot:
iStatus = mfCreateDB(&sFileName, iDBRecSize, iNumIndexes,

&iRecSizeArray, &iTypeArray)

parameters:
- Filename Path and Name of database to create (8 character name only)
- Record Size Size of the 'DATA-ONLY' field to create (up to MF_MAXREC_SIZE)
- # of index's # of index's for this data file (up to MF_MAX_NUM_INDEX)
- Size of each This is an array of integers containing the size of each index you will use

in the index (ordinal) (up to MF_MAX_KEY_SIZE)
- Type of each array of integers, again, that tells MF the TYPE of each index (MFCOMP_CHAR,

UDK value, MFCOMP_INT, etc...) This has a one-to-one correlation with the
'Size of each' parameter

returns: 0 - OK, -x error

Code Fragment (VB):
Dim file$, recsize%
Dim person As tPerson ' Key 0
Dim company As tCompany ' Key 1
Dim ref As tref ' Key 2
Dim bCard As tCard ' KEYS and Data combined to 1 structure

file = "C:\DATA\MYDB"

' Calculate the size of an individual records data
recsize = Len(bCard) - Len(person) - Len(company) - Len(ref)

' Fill arrays with index parameters (tintArray defined in mf.BAS)
ReDim indSize(0 To 2) As tintArray ' There will be 3 indexes total
ReDim indType(0 To 2) As tintArray ' Array for the index 'TYPES'

' Set the SIZE of each key so mf can allocate the space
' for it

indSize(0).i = Len(person) ' Key 0
indSize(1).i = Len(company) ' Key 1
indSize(2).i = Len(ref) ' Key 2

' The type of each index
indType(0).i = MFCOMP_CHAR ' CHAR key - case sensitive
indType(1).i = 1001 ' UDK - Sorts in 'reverse' order...
 ' (see mfUDK.c for example)
indType(2).i = MFCOMP_INT ' An integer key...

If mfCreateDB(file, recsize, 3, indSize(0), indType(0)) > -1 Then

MsgBox "File Created Successfully"
Else

MsgBox "Error creating database"
End If

Code Fragement (C):

/*
This (the typedefs) would probably be in a .h file somewhere, but
for demonstration purposes, it's here...

*/
typedef struct {

char szLName[20];
char szFName[20];

} tPersonName;

typedef struct {
int iAge;

} tPersonAge;

typedef struct {
char szStreet[20];
char szCity[20];

} tPersonData;

typedef struct {
tPersonName tName;
tPersonAge tAge;
tPersonData tData;

}tPersonRecord;

int iaSize[2]; // We have 2 indexes, so we need 2 positions
int iaType[2]; // Ditto...

iaSize[0] = sizeof(tPersonName);
iaType[0] = MFCOMP_CHARIC;

iaSize[1] = sizeof(tPersonAge);
iaType[1] = MFCOMP_INT;

if (mfCreateDB("SomeDB", // Name of DB
sizeof(tPersonData), // Size of DATA
2, // # of indexes
iaSize, // size of each index
iaType) // Each index 'type'
> -1)

MessageBox(NULL, "Successful", "NOTE", MB_OK);
else

MessageBox(NULL, "Failed", "NOTE", MB_OK);

WARNING:
The MINIMUM size for a record is 4 BYTES. The (total) size of your indexes apply towards the
minimum.

NOTES:
- Filenames/Paths should NOT have a .xxx extension. Pass ONLY the path/filename that you want.

e.g.
VALID: C:\DATA\PEOPLE
INVALID: C:\DATA\PEOPLE.DB

- mfCreate does NOT open the database, it only creates it. You must use an mfOpen to open it. Do
not try to Create an Open (open by you or anyone else...) database. This works (for some ungodly
reason!) and will corrupt any database handles (and usually GPF) the system...

- MF will create a database with the name you passed and will create a 'database.nnn' extension for
each index.

e.g.
C:\DATA\PEOPLE - You pass this...

MF will create:
C:\DATA\PEOPLE - Database
C:\DATA\PEOPLE.0 - Index for first index in list of indexes array
C:\DATA\PEOPLE.1 - Index for second index in list of indexes array
.
,
.

mfCreateIndex
Create index will re-create a 'missing' or otherwise corrupted index

iStatus = mfCreateIndex(szFileName, iIndexRecSize, iDataType, iIndexNumber)

parameters:
- the path and 'name' of the database itself (no extension)
- the 'size' of the index field (2=int, 4=long, x = char, etc...)
- the DATA type (MFCOMP_LONG, etc...)
- the 'index' # it is. (when you first created your array of indexes to be created, you
started (errrr, MF started) at zero. So, if you needed to recreate the first index (# zero), you would
pass a zero.)

e.g. (C)
int iISizeArray[3];
int iITypeArray[3];

iISizeArray[0]= 4
iITypeArray[0] = MFCOMP_LONG;
.
.
.
mfCreateDB(...);

At a later date, if you needed to recreate that FIRST index, you could do a:
mfCreateIndex("C:/PATH/SameDB", 4, MFCOMP_LONG, 0);

mfCreateIndex is automatically called by the mfCreateDB function. Unfortunately, you cannot ADD
indexes after the initial database creation (without re-creating the database). But, you could re-
build an identical index from scratch.

The new index MUST have the same SIZE (parameter 2) as the old index. However, you CAN
change the type of the index without causing a problem. When you call mfCreateIndex, the old
index is completely destroyed. You could use mfReIndex to repopulate the index.

NOTE:
This is not a recommended function. There are very few reasons to use this function. The only
possible reason is if you lose a sector on your hard drive -- and that sector happened to contain the
first 100 bytes (the header information) of the index... If you are considering this function, consider
an alternative. A better approach would probably be to create a new database and append all the
data in the current database in to the new database.

mfDeInit
Tells MF to deallocate any space it reserved for your task and to close all open databases and
indexes you opened (in your task...). (Also, releases the TASK so other applications can use it and
unloads and extensions loaded for this task.)

iStatus = mfDeInit(iTask)

parameters:
TASK (hMF_TASK) Task number returned by mfInit

returns: 0 - OK, -x error.

You should always call mfDeInit when you are through with MF. If your application is the only
application using MF, then it is rather irrelevant if you call mfDeInit. (Windows will toss MF out of
memory when the last application using MF ends).

A nice feature of mfDeInit is to close all your DB handles. If you have 'lost track' of the open DB
handles in your application, mfDeInit will close everything you have open. As to why you lost track
-- that may be of some concern. However, if you aren't sure, you can always use it. A potential
time is with the use of the mfReIndex command. Since reindexing may cause your DB handles to
change, it may be prudent (or easier) to deinit and reopen what you need.

mfDelete
Deletes a record.

iStatus = mfDelete(lRecordNumberToDelete, iTask, iDBHndl)

parameters:
- Record Number (RPTR) record number you want removed
- Task (hMF_TASK) Task from mfInit
- Database (hMF_DB) Database handle from mfOpen

returns: 0 - all OK, or -x Error

see also
mfIsDeleted

This is a 'false' delete. Or, maybe it is a 'true' delete. We are not sure which. However, when a
record is deleted, it really is deleted. The database will automatically re-use the deleted record on
the next 'mfAppendData'. In either case, ALL data in the record is set to NULL and it is removed
from all indexes (It CAN NOT be found during a SKIP or SEEK...).

It is POSSIBLE to access the record by SPECIFICALLY referencing it, however, there is no real reason
to do so. Rarely would you want to skip through a database by ACTUAL record position. DO NOT
read/write a deleted record. If you write to it, you will destroy the linked-list of deleted records. If
you READ it, you will get garbage.

mfInfoDB
(release 1.02 - enhanced)
Sets passed parameters to the status of the database.

iStatus = mfInfoDB(&iRecSize, &iNumIndexs, &lNumRecs, &lNumLiveRecs, iTask, iDBHndl)

parameters:
- Record Size 'Size' of record will be set in this variable
- # of index's Total # of index's defined for this DB
- # of RecordsNumber of records in this DB
- # live recs Number of live (not deleted) records in the database (new to 1.02)
- TASK Task handle given to you by mfInit
- DB Handle Database handle given to you by mfOpen

returns: 0 - OK or error (-x)

TIPS: You may set any of the first 4 parameters to NULL if you do not wish to retrieve that value.
This alleviates you from declaring variables that you don't need.

mfInfoIndex
Returns # of bytes in index key

iBytesInKey = mfInfoDB(iTask, iDBHndl, iNumberOfIndex)

parameters:
- TASK Task handle given to you by mfInit
- DB Handle Database handle given to you by mfOpen
- Index # Index # you want the # of bytes in the KEY for

returns: # of bytes in key (this is the value used when the index was created)
-x - Error Code

mfInit
Tells MF to allocate space for you (internally) and gives you a TASK ID.

iTask = mfInit(&extensionDLLstructure)

parameters:
- Extension DLL pointer to extDLL structure

returns: The magical 'Task' number or error (-x)

see also:
mfDeInit

This function returns the magical 'task' # that is used in every function in the system. You should
only call this 1 time PER APPLICATION INSTANCE. The task handle this function returns is used
throughout your program. When your program exits, you should call the mfDeInit function.

A maximum of 10 TASKS can be active at one time. This is, usually, not a problem since MS-
Windows wont usually support more than about 10 programs running at once...(and, unless MF is
ridiculously popular, it is highly unlikely, all 10 will require access to MF <g>).

However, if for some STRANGE reason, this is a problem for you, let us know. We'll fix it (and we
probably will, anyway, in a future release...). Also, as a temporary measure, you could rename
MF.DLL to something else and load the other name. The net-effect is that you'll get 10 more TASK
handles...

EXTENSION DLL's
The only (published and debugged) extension currently supported is that of User-Defined keys. See
Creating User-Defined Keys for more information regarding creating extensions to MF.

However, we must still talk about this parameter (whether you choose to use it or not).
' This is defined in MF.BAS (and MF.H for C)
Type tExtDLL
 type As Integer ' Type of extension
 DLLName As String * 128 ' 'FILENAME' of DLL for extension
End Type

' If you DO NOT use an extension:
 ReDim extDLLs(0 To 0) As tExtDLL
 extDLLs(0).type = -1 ' tells MF there are no more extensions
' If you DO use an extension:
 ReDim extDLLs(0 To 1) As tExtDLL
 extDLLs(0).type = MFCOMP_UDK ' tells mf to use this dll for UDK's
 extDLLs(0).DLLName = "mfUDK.dll"
 extDLLs(1).type = -1 ' tells MF there are no more extensions

' In either case, you must call the mfInit function
 TaskHndl = mfInit(extDLLs(0))

MF will automatically load the DLL containing any extensions and use them for THIS task only.
(Other tasks may use a different set of extensions...)

mfIsDeleted
(release 1.02)

Checks if a record has been deleted (by mfDelete)

iDeleted = mfIsDeleted(lRecordNumber, iTask, iDBHndl)

parameters:

- Record Record # to check for delete status
- TASK Your task number
- DB The database handle

returns:
0 - Not Deleted, 1 - Deleted. (-x is an error...)

Normally, you should not need to check the 'delete' status of a record. However, if you must
process records in 'record' order, you may need to know if the record has been deleted. A record
will never show up in an INDEX if it has been deleted. (i.e. mfSkip/mfSeek will never return a record
number that has been deleted...)

mfLock
(release 1.02)

Locks a record

iStatus = mfLock(lRecordNumber, iTask, iDBHndl)

parameters:
- Record Record # to lock
- TASK Your task number
- DB The database handle the record is in

returns:
0 - got the lock,
-1 - File already locked

see also:
mfUnLock

You must maintain the lock and unlock status of all records.
If you lock a record -- be sure to UNLOCK a record. If you do not, that record will remain locked
until:
- You close all the databases
- The user disconnects from the network
- The user quits windows

You may have as many records locked as your operating system will allow. Generally speaking, you
should only lock one record at a time. The typical time to do so is if a user requests to edit the data
in a particular record. You would lock the record until the user finished their changes and then write
the record and unlock it for others to use.

In order to use this effectively, you must make a concious decision to lock and unlock records. In
this release, MF will allow another user to write to a LOCKED record. It is up to you to decide when
a record can and can not be written to. mfLock will tell you that a record is already locked -- so, you
can make the choice to NOT allow that user to have exclusive rights to a record.

Typically:

- A user selects to 'EDIT' a record.
- You attempt to LOCK the record.
- If the record won't lock -- you tell the user that another user has the record locked and tell them to
go pound sand.
- Otherwise, you allow the user to edit. When the user selects to SAVE (or CANCEL) you would
mfUnLock the record.

mfOpen
Opens a database and all associated indexes

iDBHndl = mfOpen(&szDatabaseFileToOpen, iTASK)

parameters:
- Filename (ASCIIZ string) Path and Filename of database to open
- TASK Task handle given to you by mfInit

returns: (hMF_DB) Handle to database (used in nearly every call to MF)
-x - Error Code

See also: mfClose, mfDeInit

A database needs to be opened only once during program execution. A MAXIMUM of 14 databases
may be in use per TASK. (Up to 9 indexes are automatically opened when you open their
associated database. The index's are 0 through 8 and correlate to the 'order' in which you defined
them in the mfCreateDB.)

NOTES:
A common misconception is to register for a new task (mfInit) each time you need a new database
(mfOpen). However, a single task can handle 14 database (and their associated indexes). Most
applications should only call mfInit one (1) time throughout the application execution.

The return value of this function is used in most mfXxx calls.

mfRead
Reads an existing record.

iStatus = mfRead (lRecordToRead, &sData, iTASK, iDBHndl, iOption)

parameters:
- Record # to read Record # in the database that you want to load into the data buffer
- Data buffer a buffer (YOU created using a structure/'type') to load into
- Task Task returned from mfInit
- DB DB returned from mfOpen
- Option MFRW_ALL, MFRW_DATA, MFRW_KEY

returns: 0 - All OK, or error (-x)

Options explained:
MFRW_ALL specifies to read the KEY and the DATA into the buffer
MFRW_DATA will load only the DATA portion of the record
MFRW_KEY will load only the KEY portion of the record

Note: There is minimal performance difference for these options in the mfRead call. However,
there are major performance differences in the mfWrite call.

Normally, you will use MFRW_ALL. The other options are primarily for tuning performance.
e.g. (using the structures defined at the beginning of this guide)

Code Fragments:
' This will load ONLY the 'key' for this record into the 'key' structure
dim keyOnly as tPersonKey
junk = mfRead(1, keyOnly, TASK, DB, MFRW_KEY)

' This will load only the DATA for this record (no key information)
dim dataOnly as tPersonData
junk = mfRead(1, dataOnly, TASK, DB, MFRW_DATA)

' This will load all the data for this record
dim aPerson as tPerson
junk = mfRead(1, aPerson, TASK, DB, MFRW_ALL)

mfReIndex
(release 1.02)

Reindexes a database

iDBHndl = mfReIndex (HwndStatusDisplay, iTASK, iDBHndl)

parameters:
- Status Display Since Reindexing can be a rather lengthy process, you can have it send

a 'status' update to a window. The passed 'window' must respond to the
WM_SETTEXT (from SendMessage) in order to see the update. (This
parameter may be NULL if you don't want an update).

- Task Task returned from mfInit
- DB DB returned from mfOpen

Reindex will destroy the existing indexes and recreate them from the original data. If you think a
database index may be corrupted, this will (hopefully) fix it for you.

Reindex may take a very long time if there are a lot of records. Hence, you can pass it a handle to a
window that will recieve a 'percent complete' update. If you wish to have a status bar, you can take
this number and convert it to any status bar you wish (or, have access to...). The percent complete
will be a single string that can be converted to an integer with little difficulty. (see the sample
application for some ideas of processing the WM_SETTEXT update...). mfReIndex will send a
message at each percent complete, e.g.
0
1
2
3
.
.
.
By processing the 'SETTEXT' message, you can do an itoa() (in C) to update a percent complete
bar. Of course, you can always just display the message. The HWND you pass SHOULD have a
WM_SETTEXT capability. In VB, the EDIT BOX has this capability. An Edit1_change() event will be
generated (in VB) each time MF sends you a new number.

The mfReIndex will CLOSE all the indexes and completely recreate them. At the end of indexing, it
will reopen your database. The return value is the new DB handle. More than likely, this will be the
same DB handle you passed to it. However, it may not be. In either case, you should reassign the
return value to the DB handle you passed to it.

e.g. (in C)
hMyDB = mfReIndex(NULL, iTask, hMyDB);
if (hMyDB < 0)

MessageBox(NULL, "Reindexing failed", "WARNING", MB_OK);

The return value of mfReIndex WILL be a positive DB handle if it is successful. Otherwise, it will
return a negative value indicating the error that occured.

NO other users should access the database while a reindex is being performed.

mfSeek
mfSeek seeks the key specified in the index # specified. All seeks will be 'SOFT' seeks, meaning
they will stop at the MATCHING key or the next key HIGHER than the key specified.

e.g.
If you seek for SMITH, seek will return the first record that matches SMITH or the next highest key
(like SMYTHE).

lDBRecNo = mfSeek(&aKeyToFind, &iCodeReturned, iTASK, iDBHndl, iXHndl)

parameters:
- Seek key Pass the key that you wish to locate in an index
- Code Returned: MFSEEK_EXACT_MATCH - Found EXACT match,

 MFSEEK_PARTIAL_MATCH - Found > than
- Your TASK ID (returned by mfInit)
- The DB Handle for
this database (returned by mfOpen)
- the INDEX # to use (starts at 0 up to 9 -- Ordinal based on the order in which you

created the databases)

returns: (long) Record Number in database that matches or almost matches or EOF (No
key was greater than or equal to the key specified...).

Code Fragment (VB):

dim lrecordFound as long
dim sName as string * 20
dim icode as integer

sName = "BROWN"
lrecordFound = mfSeek(sName, icode, iTask, iactiveDB, iactiveIDX)

if lrecordFound > 0 then
if icode =MFSEEK_EXACTMATCH then

msgbox "Name exists at record " + str$(lrecordFound)
else

msgbox "Closest name greater is at record>>
+str$(lrecordFound)

endif
else

msgbox "Database is EMPTY or NO records were greater than key >>
specified"

endif

WARNING:
The key you pass for seeking SHOULD be as large as the index field you are seeking in. Generally,
nothing will go wrong if it is too small, but you MAY experience a GPF if you happen to be near a
segment boundary...(e.g. if you defined the index to be 20 characters long, make sure you pass a
seek string at least 20 characters long).

VB NOTE:
VB has two functions for this function: mfSeekO and mfSeekS.

Since VB doesn't deal with 'pointer' data types too well, we have to trick it into doing what we want.
Use mfSeekS when searching on a 'string' index and mfSeekO when searching on ANY other type of
index.

mfSkip
Returns next/previous record in index order.

lDBRecNo = mfSkip(lFromRecord, iNumberToSkip, iTASK, iDBHndl, iXHndl)

parameters:
- From Record Record to skip from
- Number of records to skip +/- # of records to skip (in index order)
- TaskID
- Database to skip in
- Index to base skips on

returns: Next/Previous record # or an error condition (like, EOF/BOF)

code fragment:

' This demonstrates processing a file in index order from the TOP -
' to the Bottom of the file...

Dim lCurrentRecord as Long

' Get the TOP (first) record in this index
lCurrentRecord = mfTop(iTask, iActiveDB, iActiveIDX)
do while lCurrentRecord >0 ' Will break on ANY error code (EOF, BOF,

' other-error)

mRead(lCurrentRecord, aRecordStructure, iTask, iActiveDB, >>
iActiveIDX, MFRW_ALL)

' process record here
' .
' .
' .

' Get the next record in the index (1 = next record,
' We could go -1 (previous record) or 10 to skip 10 records
' in the index...
lCurrentRecord = mfSkip(lCurrentRecord, 1, iTask, iActiveDB,>>

 iActiveIDX)
loop

mfTop
Returns top (first) record in index order.

lTopRecord = mfTop(iTASK, iDBHndl, iXHndl)

parameters:
- Task (hMF_TASK) Task from mfInit
- Database (hMF_DB) Database handle from mfOpen
- Index Number (int) Index that you want the 'first' record from

returns: (RPTR) first record in index order

See also: mfBottom, mfSkip, mfSeek

If you want to start at the top of an index and read through all the records in the database in 'index'
order, you can call this to get the first record in the index, then call mfSkip to move sequentially
through the database.

Note that TOP is not the first record of the database, but the first in the index you specify. (i.e. the
FIRST record in sorted order). If you want the FIRST record in the database, it is record 1. Note,
however, that Record 1 MAY be deleted! DO NOT try to read a deleted record. (see
mfIsDeleted to check whether a record has been deleted.)

See mfSkip for example

mfUnLock
(release 1.02)

Unlocks a record that has been previously locked.

iStatus = mfUnLock(lRecordNumber, iTask, iDBHndl)

parameters:
- Record Record # to lock
- TASK Your task number
- DB The database handle the record is in

returns:
0 - Unlocked previous lock,
-1 - You either DIDN'T lock the record or something terrible has happened.

see also:
mfLock

You must maintain the lock and unlock status of all records.
If you lock a record -- be sure to call UNLOCK. If you do not, that record will remain locked until:
- You close all the databases
- The user disconnects from the network
- The user quits windows

You may have as many records locked as your operating system will allow. Generally speaking, you
should only lock one record at a time. The typical time to do so is if a user requests to edit the data
in a particular record. You would lock the record until the user finished their changes and then write
the record and unlock it for others to use.

Others users may READ a record while it is locked, however, they can not WRITE to it (or lock it
themselves...).

mfWrite
Writes/Replaces an existing record.

iStatus = mfWrite(lRecord, &sFill, iTASK, iDBHndl, iOption)

parameters:
- Record # to write Record # in the database that you want to write into
- Data buffer a buffer (YOU created using a structure/'type') to write from
- Task Task returned from mfInit
- DB DB returned from mfOpen
- Option MFRW_ALL, MFRW_DATA, MFRW_KEY

returns: 0 - All OK, -Err occurred.

mfWrite works exactly the same as mfRead, only, in reverse. See mfRead for full parameter
explanations.

Note: Before you 'write' to a record, you must create a record. Use mfAppendData to create the
initial record.

PERFORMANCE CONSIDERATIONS:

When tuning performance, if you write only the DATA (MFRW_DATA) part of the record, it will be
MUCH faster. The slowest part of any database operation is updating the indexes. ANY TIME you
can avoid accessing an index, you will get a 90-99% performance increase.
(i.e. you could MFRW_DATA 90 times for every MFRW_ALL or MFRW_KEY).

Severe-Performance API
These functions perform a list of 'transactions' at a very high speed.

mfAppendList
Streams a whole list of items into a database

<Not available in this release>

mfReadList
Reads a list of record pointers from the database index using an index filter or sequentially.
The mfReadList function performs the equivalent of mfSkip, only, it is much faster.
Note: This is NOT similar to most 'filter's you may be accustomed to. It is VERY fast (unlike dbf
style filters), but it can only filter 'indexed' keys.

lNumberRead = mfReadList(lRecord, &sFilterKey, iFuzzyLength, &lHitListArray,>>
lMaxHitsWanted, iTask, iDBHndl, iIDXNum)

paramters:
- Record (Optional) - used for an 'OFFSET' when doing a continuation filter list

(Required) - used as a starting record when loading in sequential order
- Filterkey (Optional) - used to load all records (or MaxHitsWanted) records matching

filter key. If a record is not specified, this 'seeks' to the first matching record before
loading the list.

- Fuzzy -1 for EXACT key match or length of key to match. REQUIRED for FilterKey
- HitList - Array of longs that will be filled by the ReadList call. These longs (RPTR)'s are
record

pointers (i.e. physical record numbers that can be used with mfRead)
- MaxHits - The maximum # of hits that can be placed in the array. e.g. If you DIM your array to

1000, but there are MORE than 1000 hits, then it will stop filling at 1000.
- (Optional) MF_SP_COUNT (-1) Just returns a count of records that match (does NOT
fill the array)

- Task - Your task ID
- DB - The database to use
- Index - The index to load sequentially from

returns: (long) Number of hits loaded into your array. (or, COUNT of records matching
your request)

This function is 1000 times faster than an equivalent:
do while curRec > 0

curRec = mfSkip(...)
loop

(A sample is provided in the BCards demo).

mfReadList behaves in five different ways:
1 - Fill a 'filtered' wild-card (fuzzy) list of items in the index that match a filterKey
2 - Fill an EXACT match list
3 - Fill a record-sequential list of records
4 - Fill a continuation list for fuzzy or record sequential lists
5 - Get a count of records that match a criteria

NOTE: These examples use VB syntax. VB auto-converts to the type required for the DLL
(specified in the VB DLL Declare statements..). If you are a C person and are wondering WHY we
aren't passing by pointer, we actually are. Notice that we use mfReadList0, mfReadListS, and
mfReadListNull. These are not functions in the DLL, these are 'DLL redefinitions' in VB. Since C
allows you to pass whatever you wish, you can just use mfReadList and pass the correct parms. VB
requires us to work-around its problem of not supporting pointers.

1- One of the most interesting features of this is to get a 'filtered' list of items.
e.g. Lets say you have an array of int's as the index item. You want ALL items in the list that have
an initial integer value of 2.
VB
dim srchArray(0 to 2) as tIntArray
srchArray(0) = 2
lNumberRead = mfReadListO(0, srchArray, 2, &myBigArray, 1000, iTask, >>

iDBHndl, iIDXNum)

e.g. Lets say you want all the last names that begin with a 'B' in a character index
lNumberRead = mfReadListS(0, "B", 1, &myBigArray, 1000, iTask, iDBHndl, iIDXNum)

Note that by changing the value of the 'fuzzy length' (parameter 3), we tell it to only compare the
FIRST character in the list to our index filter.

C
// Loading integers
int iArray[3];
long myBigArray[1000];

iArray[0] = 2;
lNumberRead = mfReadList(0, (FPDATA)iArray, 2, (long FAR *)myBigArray, 1000, >>

iTask, iDBHndl, iIDXNum)

2- If you wanted all keys in an EXACT match sequence you could say:

lNumberRead = mfReadListS(0, "Smith", -1, &myBigArray, 1000,iTask,iDBHndl,iIDXNum)

The 3rd parameter (-1) tells the mfReadList function you want EXACT matches ONLY.
NOTE: BE SURE you PAD to the maximum length of the string you are seeking as an exact match.
Otherwise, you may get errors or no-hits. If you are using this for 'ints' or 'longs' padding is never
required, however, you must still pass all relevant pieces of the 'int/long' index array.

3- Record Sequential
Future releases of MF will include a CC (custom control) that will support a 'browse' table. If you
want to be able to display a 'browse' list of all records in the database TODAY, you could use this
call to load a group of records in sequential order so that the user can see a nice sorted list. Other
than that, it isn't very usefull...
e.g.
VB
' This will load the first 1000 records (pointers! to records)
' for the specified DB...
lTopRecord = mfTop(iTask, iDBHndl, iIDXNUM)
lNumberRead = mfReadListNULL(lTopRecord, H0&,0, &myBigArray, 1000, iTask, iDBHndl,>>

iIDXNum)

4- Continuation of lists of records
Since a database may have millions of records, it would be silly to think that you can fit all the
record pointers into available RAM. Therefore, you can do a 'continuation' list:

With fuzzy/exact lists:
lNumberRead = mfReadListO(0, 2, 2, &myBigArray, 1000, iTask, iDBHndl, iIDXNum)
more = True

do while more
.
.
. process this lNumberRead number of records

' ReadList always gives you as many as you ask for (unless there aren't that
' many...)
if lNumberRead < 1000 then

more = False
else
' Skip 1 record (so we start processing with the NEXT highest record...)
lNextRec = mfSkip(myBigArray(1000).l,1, iTask, iDHndl, iIDXNum)
lNumberRead = mfReadListO(lNextRec,2,2,&myBigArray,1000,iTask,iDBHndl,iIDXNum)

endif

loop

Note: In this example, we use parameter 1 with something OTHER THAN 0. This causes mfReadList
to start processing with the NEXT record in the list.

With SEQUENTIAL record lists:
substitute:
lNumberRead = mfReadListO(lNextRec,2,2,&myBigArray,1000,iTask,iDBHndl,iIDXNum)
with:
lNumberRead = mfReadListNULL(lNextRec,0,0,&myBigArray,1000,iTask,iDBHndl,iIDXNum)

Also, you should pre-calculate the TOP record for the initial read (mfTop(...)).

Creating User Defined Keys

You can only create UDK's (User Defined Keys) in a 'DLL'. If we figure out a way to allow VB to
create a UDK (that's fast enough), we'll do it. That said, read on...

A UDK will receive 4 parameters: ptrToMem1, ptrToMem2, the length of the key, and the 'CODE'
used when creating the index initially.

Your job is to evaluate the two keys and return either:
-1 Key 1 > Key 2
0 Keys are =
1 Key 1 < Key 2

The name of the _exported function must be 'mfUDK'. You can place it in a DLL you already have
or create a new DLL just for this.

When the you call mfInit, you should pass the filename of the 'DLL' that you placed the function
'mfUDK'. The VB sample bCard*.* uses the reverse-sorting index for the 'Company Name' field. It
also shows the proper way to get the UDK DLL loaded.

Code Fragment:
(This code is available as CSAMPLE\UDK\mfUDK.C)
/*

 MF.DLL will call this function and pass the following parameters:
 pass:
 val 1 (LPSTR a)
 val 2 (LPSTR b)
 length (Size of keys to compare)
 type (This will be a number >= 100)

 the 'type' is the 'type of index' specified when the index's where
 created. (i.e. When you called mfCreateDB you passed an array of
 index types. One of those 'types' was >= MFCOMP_UDK. Whatever that
 # was, it is now passed to you (as the type). This allows you to
 support multiple UDK's in one function.

 You should return:
 returns:
 0 == equal
 1 == val 1 > val 2
 -1 == val 1 < val 2
Demonstrated in this example is a reverse-sorting for character fields
and a variable length char and INT field. The 'type' passed for
these fields is:
 1001 = reverse sorting characters
 1002 = variable length char and INT

*/
int FAR PASCAL _export mfUDK(LPSTR a, LPSTR b, int len, int type)
{
 int iReturnValue;

 switch(type){
 case 1001:
 // _fmemcmp is a MS-C runtime library routine. (It is
 // actually pretty quick, believe it or not...)
 // Anycase, it returns the EXACT same parameters we need to
 // return from this function...
 // NOTE: To show the reverse-sorting, we just switched the
 // order of the parameters to fmemcmp. For 'alphabetical'
 // we would have put 'a' and then 'b'.
 return(_fmemcmp((LPSTR)b, (LPSTR)a, len));
 break;

 case 1002:
 // NOTE: By using the value of 'len' we can make this
 // a 'variable' length string routine. e.g. if the user
 // made the key 80 bytes, this routine would still
 // work (by comparing the first 78 bytes and then the
 // integer tacked onto the end...)
 iReturnValue = _fmemcmp((LPSTR)a, (LPSTR)b, len-2);

 // We can stop checking now because the keys first set of
 // keys (the char[len]) doesn't match, therefore the value
 // of the INT is irrelevant)
 if (iReturnValue != 0)
 return (iReturnValue);

// NOTE: This may FAIL if the user is using a mfReadList
// and specifies a shortend key length for the filter.

 if (*(int FAR *)(a+len-2) < *(int FAR *)(b+len-2))
 return (-1);
 if (*(int FAR *)(a+len-2) > *(int FAR *)(b+len-2))
 return (1);

 return(0); // exact match...
 break;

case 1003:
// Add more user defined keys if you wish...
break;

 }

}

NOTES and WARNINGS:
We will attempt to make all severe-performance functions work seemlessly with the UDK's. If we
cannot, we will extend the UDK parameter list.

One word of caution: On the mfReadList, a 'fuzzy' search will call your function with a 'shortened'
length. (e.g. The key may be 20 bytes, but it will tell you there are only 2 bytes...). In this situation,
it is IMPERATIVE that you DO NOT assume the length of the key minus 2 contains an 'integer' value
or some other such non-sense...(Our example is an example of what NOT to assume...(case
1002:...))

Therefore, just 'think' about any implications that may arrise from a shortened key and you should
not have any problems.

Appendix A
Designing databases for performance

This is a topic that gets dismissed in many manuals. Even the 'books' in a store don't do justice to
this topic. (We know, when designing MF we bought dozens of books on these subjects...None of
them made much sense. Hopefully, this will.)

READING DATA

Data can be small or big, but the size of it has little to do with the performance of the database. For
the most part, it doesn't take any longer to READ 512 bytes than it does 10-bytes. (But, it takes
significantly longer to read 50 10-byte records than 1 512 byte record...). There's sort of a reason
for this: When the data starts to pump, it can pump 512 just as efficiently as 10. On some
machines, data 'packets' can be 4096-bytes. Rarely is a packet any larger than 4096. We have
optimized MF for 512-byte packets. This is a 'common' maximum size for a network packet and
seems to work well (speed wise). Some networks support 1K, or 4K packets, but don't fret, it's
better to be 'under' their maximum packet size than a couple of bytes over (which would generate
a second packet of information for a couple of bytes...). Bigger network packets are good if you
deal with LARGE data fields or BLOBS, but are wasteful when dealing with index's.

Future releases of MF will contain packet-size optimization and BLOBS.

INDEXES

The SLOWEST part of any database is its' index. Many have forgotten this or don't know about it.
Generally, index's are 1/100th as fast as straight data access. AVOID needless indexes. It MAY be
faster to sort a 100 record file each time you access it than it is to create an index file for it.
However, indexes are convenient and many of us use them just for that reason. If you plan to
access a 'small' table very frequently, consider storing it in an array in RAM and writing any data
changes to the database without any indexes. (Or, just use the index as the 'sorter' and load the
entire table into RAM one time...)

The Severe-Performance functions help resolve some of the problems with indexes. One way is by
caching all the index information so no disk read/writes are required. Another way is by loading a
bunch of related 'nodes' in the index so that sequential data access is much faster. The problem
with caching-indexes in a network environment is that any change to any part of the index can
affect the entire index. So, the cached portion of the index is 'dirty' and cannot be used.
Additionally, there is no way to know if a particular 'node' in the index has been affected by another
user. This problem is what makes 'Client/Server' databases faster than non-C/S databases. A C/S
database can cache an index and not worry about someone 'changing' a node in the index. Of
course, not everyone needs (or can afford) C/S databases.

In any case, what the Severe-Performance (SP) functions do is: Lock the index momentarily, do their
business (in C/S type of style) and then unlock the index for others to access it. Generally, it only
takes a 'blip' to do its business. The SP functions stream a whole bunch of records at once into (or
out of) the database and free it up again.

TRICKS TO SELLING YOUR PRODUCT and USING (hopefully) MF TO DO IT

BATCHING DATA

You can accomplish some pretty interesting tricks using the severe performance (SP) functions or

just straight accesses. For instance, consider 'BATCHing' in a large quantity of records. Use a
regular flat database with no-indexes and then, once per day or as needed, stream all the data in
the 'batch' database into the on-line database (the one that has the indexes, etc...).

The performance (to the user) will seem MUCH faster and you will probably be able to handle
thousands of more transactions per day than otherwise. This is a trick that most mainframe's use
to make them appear faster.

e.g. Say you have 5 mainframe's for data-entry and each mainframe uses it's own 'batch' file. At
night, you take all the batches and combine them into the 'on-line' mainframe database. Using this
method, you can process many more records at one time and provide faster user response. If you
had just one monolithic sized mainframe, you couldn't support as many users (simultaneously) as
you could with 5 (or more) cheaper mainframes. Some call this 'distributed processing'. We call it
common sense.

If you design your system to utilize this kind of process, you will be able to get it as big as you care
to. Think about a system that DOESN'T do this. Lets say, for instance, you work for a mail-order
company. As the company grows, you find that the little system that takes orders over the LAN is
bogged down. You've hit 100+ order takers and the response time is in the 5 to 10 second range.
Now, if the system used a 'batch' type process, you could just add another file server, split the LAN
into 2 (or more) separate legs and process the orders at night (or when convenient...). Additionally,
you can keep splitting the LAN as the company gets bigger and bigger.

What happens when the biggest, baddest machine can't batch in all the orders during the overnite
process? See the next section...

DESIGNING FOR THE FUTURE

Lets say that your biggest machine can't handle all the transactions for the day. Your boss is pissed
and about to fire you... What do you do? Split it up. Who says that all the customers have to be in
one database? Find the logical separation point and split the data into two (or more) separate
systems. Sure doing 'daily totals' will require a little more coding, but don't dismiss this idea yet.

e.g. [true story] A major long-distance company experienced massive growth in the early '80's...
(guess who?) In any case, they had the biggest, baddest IBM mainframe you could own. The daily
'call processing and billing' took 23 HOURS to calculate. Not bad. They had one hour to spare...
Then, as months went by, the processing time started rising up to 25 HOURS to calculate. They
couldn't process all the days calls in one day... The LD company called IBM and had them ship
super high speed drives, more RAM, even faster BETA chip-sets... To no avail, the transactions
where taking 25-30 hours a day. So, what did they do? They bought 2 more mainframes, put half
the customers on one, put half the customers on the other and used one for calculating the daily
roll-ups... Not only did this solve thier problem, it gave them a processing time of only 12 hours and
room to spare if anything went wrong during the processing...

Transaction Tracking (TTS) and the real problem

This issue has been eroded to the point that most of the articles that cover it don't seem to have
any idea about what it really is or haven't ever even tried to implement it. If you're tired of seeing
that a database has TTS and all you need to do is 'write to the TTS system and it will automatically
rollback any data-loss', etc. and you wonder exactly HOW this works.... Well, anyone can
implement TTS by creating a 'batch' area that either ALL process's into the system, or if something
crashes, removes the partially added records. That's a nifty feature to have built-in, but what
REALLY happens is that you end up with a 'partially' corrupted record or index. What TTS WON'T do,

in every case we've seen, is fix a partially corrupted index or record. Sure, you can re-build the
index from scratch. How long do you think that would take on a database, with say, 10 million
records? WAY to long. It would be quicker to restore from a back-up.

With that in mind, lets take the issue of 'performance'. If you NEED high-performance, you DON'T
want transaction tracking. (OK, yes, in an ideal world, transaction tracking and high-performance
go hand-in-hand...but, this isn't an ideal world and we don't all have $20,000 per data server to
blow...(on software alone...)). Do mainframes offer TTS and high-speed? Yes, of course they do.
But, the controller on a mainframe hard-drive costs $15,000 (as opposed to IDE for $15 bucks and
THAT includes a serial/parallel and game port...<g>). Also, storage runs $10,000/gigabyte on a
mainframe <plech>.

So, what is TRANSACTION TRACKING and 'ROLLBACK' and HOW do I implement it on my own? Well,
you can buy a C/S database that offers it. Or, read on:

Using the BATCH concept, think about how you can implement TTS. The general methodology is:
- Back-up the on-line database
- BATCH in the daily data
- If there is an error (POWER failure, Disk Failure, etc), RESTORE the on-line DB and repeat batch
load.

Sound terrible? Yeah, it does. But, think about it. Any data worth protecting is going to be backed
up daily (or even HOURLY), right? OK, so A) You made the back-up for the day and B) you gained
the performance benefit of the batch process. Not only that, but there wasn't any TTS overhead, so
your transactions during the day are faster.

I know SOMEONE has to be thinking, 'What about that BATCH file that was created throughout the
day? What if the power fails during a write to it?'. Good question, and the answer is: It's a FLAT file
so you can doctor it without worrying about the linkages that will be created later in the day in the
on-line database. I realize that you wont always be on-site to correct problems to your application
so you should consider a 'doctoring' program that will remove any bad writes (or, at least ignore
bad-records when doing the batch process).

Anyway, we hope this information will help you in explaining to your clients WHY your system works
better. If you need to discuss implementation issues, please, feel free to contact us.

Additionally, if you don't use MF, all this information still applies to other databases. We just
thought it was our job to tell you about it. Heck, why did you buy a database? Because you didn't
want to deal with designing the database algorithms. But, you buy it and then no one tells you the
tricks to really use it...

DOCTORING

We mentioned doctoring the database in the TTS section. I guess we should tell you HOW you
might go about doing this. It's really simple:

MF databases have a 50 byte offset. After that, all the data in the record EXACTLY matches the
data structure you have defined it to be (plus 8 'status' bytes appended to the end of each record).
Doctoring indexes will have to be left to another discussion...(maybe a future tech note if anyone is
truly interested...).

The pertinent header information for an MF DB is:

Number of records in DB: 14th byte (long)

Pointer to 1st deleted record: 18th byte (long)

To convert either of these longs to a logical record position, use:
(lNumberOfRecord * (sizeof(RecordStructure) + 8)) + 50;

WARNING: While you may want to circumvent MF to do read/write, don't do it with any MF
database open... The READ's are pretty safe, but if you write to a record, the index tables will NOT
be updated and you will end-up with multiple seek pointers to one record. While this could be
considered a 'feature', it certainly will confuse you if it is not what you intended to do. A future
release will take advantage of this and allow a linked-list to be generated for a single record. (i.e.
multiple-keys for one key field, or better known as a 'one to many relationship...')

One nifty feature of this, though, is streaming a list of 'record number sequential' records into RAM.
You could open the database and read hundreds of records in one disk I/O. They won't be sorted,
but, if you don't care, then feel free.

Appendix B
LIMITS

DATABASE:
Max Record Size: MAX_INT_VAL (32kish) minus Size of Index
Max DB Size: 2 Gigabytes (unverified...)
Max # Records: 2 Billionish or 2 Gigabytes in total disk space (whichever is first)

INDEX:
Max Key size: 128 Bytes
Max Index Size: 2 Gigabytes
Max # of Records: (2GB / (KEY_SIZE +9Bytes)) (minus UP TO 50% depending on order in which

record keys are recieved and indexed) -- This is another common
occurence that

most manuals FAIL to mention. Anycase, to give you an idea, a 50 BYTE key
would

top out at 10-20 million records...
Indexing method: B-Treeish

NOTE: You're index will, inevitably, exceed the size of your database. Unfortunately, there isn't
much we can do about this problem. (Actually, your index will only exceed the DB size if you have a
rather large index field and a rather small DB field...). In either case, when calculating how many
records you can get into a DB, it will usually be MUCH LESS than the maximum values specified.
The 'MINIMUM' size of an index key is approximately 9 Bytes + the size of the index key. Don't fret,
yet. This is a 'common' occurrence in the DB world. We doubt HIGHLY that other DB's can do it in
less space. Future versions may split index files for you. We think all databases should split index
files for you, but, that isn't the case, yet. This information is purely for your education.

An interesting note: Is it 'faster' to load data into the index in alphabetical (keyAbetical?) order?
No. As a matter of fact, in this DB, it would be SLOWER and the index would be BIGGER. MF
indexes don't rely on 'random' data, however, they are more efficient if the data is 'random'. Why
is this? To create room in the index, we 'split' nodes to make room for more data. If the nodes fill in
sequential order, they will split by 50% each time. To save processing time, we only 'join' nodes if
data drops below 50%. If the data is random, it will 'fill' these 'low-value' nodes and no node-
splitting will need to occur (unless, of course, the node hits capacity...).

Appendix C
QUICK REFERENCE

I/O
int mfWrite(RPTR Record, FPDATA dFill, hMF_TASK Task, hMF_DB dbHndl, int Option)
int mfRead (RPTR Record, FPDATA dFill, hMF_TASK Task, hMF_DB dbHndl, int Option)
int mfDelete(RPTR Record, hMF_TASK Task, hMF_DB dbHndl)
RPTR mfAppendData(FPDATA dFill, hMF_TASK Task, hMF_DB dbHndl)

Movement
RPTR mfSeek(FPDATA SkStr, int FAR * Code, hMF_TASK Task, hMF_DB dbHndl, int iHndl)
RPTR mfSkip(RPTR record, long NumSkip, hMF_TASK Task, hMF_DB dbHndl, int idxNumber)
RPTR mfTop(hMF_TASK Task, hMF_DB dbHndl, int idxNumber)
RPTR mfBottom(hMF_TASK Task, hMF_DB dbHndl, int idxNumber)

Creation
int mfCreateIndex(LPSTR FileName, int RecSize, int DataType, int NumOfIndexes)
int mfCreateDB(LPSTR FileName, int dRecSize,

int NumIndex, int FAR * iRecSize, int FAR * iType)

General stuff
int mfInfoDB(int FAR * RecSize, int FAR * NumIndexs, RPTR FAR * NumRecs,

RPTR FAR * LiveRecs, hMF_TASK Task,hMF_DB dbHndl)
int mfInfoIndex(hMF_TASK Task, hMF_DB dbHndl, int iHndl)
int mfIsDeleted(RPTR RecordNumber, hMF_TASK TASK, hMF dbHndl)
hMF_DB mfReIndex (HWND HwndStatusDisplay, hMF_TASK iTASK, hMF_DB iDBHndl)
int mfLock(RPTR Record, hMF_TASK Task, hMF_DB iDBHndl)
int mfUnLock(RPTR Record, hMF_TASK Task, hMF_DB iDBHndl)

Administrative
hMF_DB mfOpen(LPSTR FileName, hMF_TASK Task)
int mfClose(hMF_TASK Task, hMF_DB dbHndl)
hMF_TASK int mfInit(ptmfExtDLL szExtCalls)
int mfDeInit(hMF_TASK Task)

Severe-performance functions
long mfReadList(RPTR record, FPDATA passStr, int FuzzyMatch, RPTR FAR * hitList,

long MaxNumHitsWanted, hMF_TASK Task, hMF_DB dbHndl, int iHndl)

Appendix D
ERROR CODES

Error # Description

Seek/Skip Errors (See also mfSkip for additional return codes)
-1 mfERR_BOF

Technically, this isn't an error. But, if you get this error it means:
- You tried to mfTop with NO data in the database
- You tried to Skip(-1) and there weren't any more places to skip to
-

-2 mfERR_EOF
- There was no data in the database on a SEEK
- The KEY specified in the SEEK was greater than any other key
in the database
- You tried to Skip(1) and there weren't anymore places to skip to.

mfOpen
-10 mfERR_OPEN_UNDEFINED

DOS wouldn't open the file. No reason could be determined

-11 mfERR_OPEN_NOHNDLS
Out of file handles. Close some other files to open more.

-12 mfERR_OPEN_INVALIDFILE
Bad filename passed for database. If the PATH or filename is not
valid, this will come back.

-14 mfERR_OPEN_INVALIDFORMAT
Attempted to open a file that was not created with this release of MF

-15 mfERR_OPEN_NO_DBINIFILE
Undefined in this release

-16 mfERR_OPEN_UDK_NOT_FOUND
Couldn't load the UDK dll you specified for the OPEN.

-17 mfERR_OPEN_INDEXMISSING
Index file could not be opened. (Not found or otherwise...)

mfClose
-21 mfERR_CLOSE_BAD

More than likely, someone deleted the file while it was open. (Or, maybe the
network connection was lost, etc...)

mfWrite
-31 mfERR_WRITE_BADRECORD

Invalid record # passed. Generally, only a negative record # will generate
this error. End-of-file is NOT checked for, therefore, you could read millions of
records past the end and not generate an error.

-32 mfERR_WRITE_NOLOCK
Couldn't lock the index's for updating. In most cases, you will not
experience this error. MF will attempt to lock the index for 20 seconds
before it generates this error. If, in that time, it cannot lock the record,
it will return this error. If you have a particularly busy system, you may
reattempt to lock/write the record.

mfRead
-41 mfERR_READ_BADRECORD

Invalid record # passed. Generally, only a negative record # will generate
this error. End of file is NOT checked for, therefore, you could read millions of
records past the end and not generate an error.

mfAppendData
-51 mfERR_APPEND_NOADD

Database is full or corrupted.

mfInit
-61 mfERR_REG_NOTASKS

All tasks have been allocated. No more where available for you.

mfCreateDB
-71 mfERR_CREATEDB_BADFILE

Bad filename passed for database. If the PATH or filename is not
valid, this will come back. A database name must be a valid DOS filename
and must NOT contain an extension.

-72 mfERR_CREATEDB_BADRECSIZE
Attempted to create a database with less than 4 total bytes per record.
The database WILL be created, however, if you call mfDelete at a later date,
you will GPF. (e.g. You may have a database with less than 4 bytes/record,
however, you may not use the mfDelete function on it.)

mfCreateIndex
-81 mfERR_CREATEINDEX_BADFILE

Bad filename passed for database. If the PATH or filename is not
valid, this will come back

General Errors (May be caused by any function)
-220 mfERR_BAD_TASKSELECTOR

Bad TASK handle passed

-221 mfERR_BAD_HNDLSELECTOR
Invalid 'database' handle passed

-222 mfERR_BAD_INDEXSELECTOR
Invalid index # (Index # greater than MAX # of index's)

-223 mfERR_BAD_EVERYTHING
One of the 3 above was hosed. Trying to determine WHICH may have
caused a GPF, so we didn't test it...(Usually, it means you passed a negative
value... The Task/DB/Index #'s should never be negative... If they are, an

 error occurred that wasn't caught.)

-300 mfERR_RECORD_DELETED
You tried to perform an operation on a deleted record.
If you have selected the MF Debug mode, this could be returned from any function
that accepts a 'RECORD NUMBER' as a parameter.
In non-debug mode, only mfDelete will return this error.

Undocumented API errors (for internal debugging/testing). If we didn't screw up, you shouldn't get
one of these... These could also be caused by a faulty drive (unlikely, but possible...).

-91 mfERR_UPDINDEX_BADSEQ
Old data (index) did not exist where it should have.

-92 mfERR_X_NOOLDKEY
No previous index pointer.

-93 mfERR_X_NOADDKEY
No key specified for add

-101 mfERR_SPLIT_NOROOM
Database (index) was completely filled. (You COULD get this if you filled the
database to the max...)

Appendix E
Technical Support

Technical support is available to all registered users by the following methods:

For the latest releases and support questions:
The Programmers Corner BBS (Great BBS; 15 or so lines, rarely a busy signal...)

(301) 596-7692
(410) 995-6873
(301) 621-3424

- Send mail to Carl Brown in the General section (#1) or search the files (area: databases) for
MF*.ZIP to find the latest release. Note: Due to 'naming' restrictions, make sure you download the
file with the 'latest' date. MF is a free download from Programmers Corner.

Internet: CBROWN@access.digex.net
CompuServe: INTERNET:CBROWN@access.digex.net

- All new releases will be placed in the DBAdvisor forum on CompuServe.
NOTE: Shortly, CompuServe support may be dropped. As the 'Internet' provides inexpensive
access, we will be moving to an FTP site for updates. All registered users will be notified when this
happens. If CompuServe moves to a different method of billing (i.e. gets cheaper) we will keep the
CServe access available. However, we have found that most users have Internet access, so we
may drop this rather costly CompuServe support.

Those of you that have not experimented with the Internet, please try it. The going rate (in the
Washinton D.C. area) is about $25/month for nearly unlimited access. CompuServe 'Forums' are
nice -- but expensive. The Internet provides a similar service and it's next to free. (Sorry if this
sounds like a cop out for CServe access, but with our costs escalating at a ridiculous rate we just
can't afford it without going to a fee-based technical support plan). Pick up a book called 'The
Whole Internet'. It'll guide you through what the Internet is and turn you on to some very affordable
options that you may not know about.

- Please try to use a method above. If all else fails or in an emergency, we may be reached at
(voice):
(301) 340-9134 (may change in January 1994)
(703) 750-1484 (should stay the same...)

When corresponding, -PLEASE- include the version # you are using (found at the top of this
document). It is hard to tell what types of errors you have when we don't know your version #.
Also, if you are on an older release, we can inform you of where to get the latest release.

Warranty

No warranty is provided at this time. If you really want to see a 'warranty' sheet, read the back of
any major software application. I am sure that it will suffice to cover any questions you have.

However, we will do our best to respond to your questions completely and quickly. We will make
every effort to fix any reported bug. And, if it is a MAJOR bug (e.g. data loss may occur...), we will
make an effort to contact all users with distribution rights.

